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A closed-form analytical solution for the transmission loss of a dissipative silencer with
a circular cross-section is described. The silencer contains a bulk reacting acoustic absorbent
which is separated from a mean gas #ow by a perforated screen. Theoretical predictions of
the silencer transmission loss for three di!erent dissipative silencers are compared both with
experimental data and with another more complex modelling technique. Good agreement is
noted between the analytical theory and experimental data in the low-to-medium frequency
range. Below a de"ned upper frequency limit the analytical technique is also shown to
provide good agreement with the "nite element method. In addition it is observed that, even
for relatively high open area porosities, the perforate screen has a signi"cant e!ect on
dissipative silencer performance.
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1. INTRODUCTION

Dissipative silencers are commonly deployed to attenuate broadband noise emanating from
internal combustion engines. In recent years, silencer modelling techniques have advanced
considerably and methods are now available for studying automotive dissipative silencers
of any shape or size. The advancement in design techniques has been accompanied by an
increase in model complexity and the use of numerical formulations is now widespread. For
example, both the "nite element method [1, 2] and the boundary element method [3] have
been used successfully to model dissipative silencers, although the "nite element method is
currently the most popular technique. Dissipative silencers of arbitrary shape, or even those
with an arbitrary but uniform cross-section, require numerical techniques in order to obtain
su$ciently accurate predictions [4]. Numerical methods are not, however, always required
when studying simpler silencer geometries and opportunities exist for economizing on
model complexity and subsequent CPU run time, whilst retaining prediction accuracy.

Simple silencer geometries, such as a circular cross-section, are often found in automotive
applications. The dissipative silencer typically consists of an expansion chamber, lined with
a porous acoustically absorbent material surrounding a central airway in which the exhaust
gas emanating from the engine is transported. To prevent loss of, or damage to the porous
material, a concentric perforate screen typically separates the absorbent from the mean gas
#ow. The acoustic modelling of circular dissipative silencers is well established due to the
relative simplicity of the geometry, although most studies concentrate on predicting modal
attenuation rates for in"nite silencers. For example, Ko [5] derived a governing
0022-460X/01/230403#24 $35.00/0 ( 2001 Academic Press



404 R. KIRBY
eigenequation for annular and circular ducts containing a bulk reacting liner and mean gas
#ow. Later, Nilsson and Brander [6] studied the e!ects of a perforate screen on modal
attenuation rates in a lined in"nite duct. The e!ect on modal attenuation rates of an internal
mean #ow within the bulk reacting liner was examined by Cummings and Chang [7], who
solved the governing eigenequation for a circular silencer by using an iterative
Newton}Raphson scheme. Frommhold and Mechel [8] chose to avoid iterative schemes
and developed an analytic closed-form solution for attenuation rates in a dissipative
silencer although the e!ects of mean #ow and a perforate were omitted (see also
reference [9]).

The prediction of modal attenuation rates in in"nite silencers provides only a guide to
overall silencer performance. To characterize more fully the acoustic performance of a "nite
length silencer it is also necessary to model the in#uence of the entry and exit planes of the
silencer. This can readily be achieved provided modal attenuation rates have already been
computed. For example Nilsson and Brander [10] employed the Wiener Hopf method to
study the in#uence of the entry and exit planes in a dissipative silencer, after "rst calculating
modal attenuation rates for a lined in"nite duct [6]. A more straightforward technique,
known as mode matching, was later utilized by Cummings and Chang [11] in order to
calculate the transmission loss of a "nite length silencer after "rst extracting six di!erent
modes from the governing eigenequation. Cummings and Chang matched axial acoustic
particle velocity and acoustic pressure across the silencer discontinuities and good
agreement between prediction and measurement was observed. Later, Peat [12] matched
the average acoustic pressure and volume velocity across the silencer discontinuities and
derived an explicit closed-form solution of the governing eigenequation before predicting
the transmission loss of a dissipative silencer. The method of Peat [12] relied upon
substituting low argument approximations for the Bessel and Neumann functions present
in both the governing eigenequation and the matching conditions. This avoided iterative
solution schemes but restricted transmission loss predictions to those calculated using the
least attenuated mode only. Nevertheless, Peat [12] found good agreement with the
multi-mode transmission loss predictions of Cummings and Chang [11] and proposed that
discrepancies between the two methods at higher frequencies were caused only by the
omission of higher order modes.

Explicit, closed-form, algorithms capable of predicting modal attenuation rates and/or
silencer transmission loss are attractive since they o!er the potential for fast computation
and avoid the problems associated with iterative schemes, such as sensitivity of the "nal
solution to the initial guess and the &&jumping'' of modal solutions. Obviously, the bene"ts
gained by using a simpli"ed algorithm to predict silencer performance must be balanced
against the desired prediction accuracy; nevertheless, the potential advantages of an
analytical formulation make the investigation of such a technique worthwhile. In this paper,
a simpli"ed analytical approach to modelling circular dissipative silencers is described. An
approach similar to the one adopted by Peat [12] is proposed here, but extra terms in the
series expansion of the Bessel functions are included. The reasoning behind this is that the
model presented by Peat is accurate only for relatively small silencers or at low frequencies,
whereas the introduction of extra terms in the series expansions potentially allows larger
dissipative silencers and/or higher frequencies to be modelled accurately.

The analysis adopted here splits conveniently into two parts. First, the governing
eigenequation for a circular dissipative silencer is solved by substituting series expansions
for the Bessel and Neumann functions present in the eigenequation. The method follows the
one described by Peat [12], but retains a greater number of terms in the series expansions,
and a perforate screen is also introduced into the model. Secondly, transmission loss
predictions are obtained by applying the mode matching technique described by Cummings
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and Chang [11], but retaining the fundamental modes only. Moreover, the matching
conditions at the silencer discontinuities are simpli"ed by substituting series
approximations for the Bessel and Neumann functions. The transmission loss predictions
obtained are then compared against experimental measurement and also against
predictions obtained by using the "nite element method (see reference [1]). In order to
provide a stringent test of the new method, larger silencers than those studied previously
[11, 12] are chosen here and two di!erent porous materials are examined.

2. GOVERNING EQUATIONS

The dissipative silencer studied in this section is assumed to have a uniform circular
cross-section and to contain a uniform mean gas #ow of Mach number M in the central
channel (see Figure 1). In the silencer chamber, a perforate screen separates the central
channel (region 2) from the (isotropic) porous absorbent (region 3). The inlet and outlet
pipes are denoted by regions 1 and 4 respectively. The theory presented here is based on
previous work [7, 12], although the derivation is modi"ed slightly to include the in#uence
of the perforate screen and the omission of mean #ow in the absorbent (negligible due to the
presence of a perforate). To begin with coupled modal solutions are sought for the sound
"eld in both the airway and the absorbent, with a common axial wavenumber linking the
two regions, although the analysis is restricted to the fundamental, or least attenuated,
mode only.

2.1. EIGENVALUE FORMULATION FOR AN AXISYMMETRIC DISSIPATIVE SILENCER

The acoustic wave equation in region (2) is given by [7]

1

c2
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!+ 2p@
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"0, (1)

where c
0

is the isentropic speed of sound, p@ is the acoustic pressure and t is time. Assuming

a time dependence of e*ut (where i"J!1 and u is the radian frequency), equation (1) may
Figure 1. Geometry of dissipative silencer.
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be re-written as
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) is the wavenumber and M is the mean #ow Mach number in the central

airway. The acoustic wave equation in region 3 may be written [7] as
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provided the porous medium is assumed to be isotropic with a propagation constant C. The
coupled sound "elds in regions (2) and (3) are now expressed as a function of the least
attenuated incident and re#ected propagating mode, i.e.,
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where p@
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(x, r) denotes the acoustic pressure in the chamber (regions (2) and (3) combined), P

c
is the modal coe$cient, W
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(r) is the transverse modal eigenfunction, k

x
is the (coupled) axial

wavenumber and i refers to an incident wave, and r to a re#ected wave. By substituting the
assumed sound "eld in the chamber back into equations (2) and (3) and by taking a solution
involving the positive travelling mode only, the acoustic pressure in regions 2 and 3 may be
expressed as
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respectively, where CI "C/k
0
.

The governing eigenequation for the chamber is derived by applying continuity of normal
particle displacement across the perforate screen and, at r"r

1
, by enforcing
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where f is the (dimensionless) acoustic impedance of the perforate and m@
2

is the radial
acoustic particle displacement in region 2. The assumption of an in"nitesimally thin
perforate is implicit in the application of the boundary conditions and is valid because the
thickness of a perforate screen is typically small when compared to the overall silencer
dimensions. Continuity of normal particle displacement at r"r

1
gives
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where m@
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is the radial acoustic particle displacement in region 3. The linearized Euler
equation gives the acoustic particle displacement in regions 2 and 3 as
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respectively, where o (u) is the equivalent bulk complex density of the porous material.
Substitution of equations (9a) and (9b) into equations (7) and (8) links together the pressure
"elds in regions 2 and 3 and, after application of equations (5a) and (5b), an eigenequation
for the chamber may be written as
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Equation (10) is identical to the governing eigenequation derived by Cummings and Chang
[7] except for the introduction of an extra term accounting for the perforate screen and the
assumption of an isotropic porous material. Furthermore, the transverse modal
eigenfunctions are now given as
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The eigenequation may be solved for the positive propagating axial wavenumber k
xi

once
the radial wavenumbers a

i
and b

i
have been expressed in terms of the axial wavenumber by

applying equations (7a) and (7b). Cummings and Chang [11] adopted an iterative
Newton}Raphson scheme to solve the governing eigenequation and successfully calculated
the axial wavenumber for six di!erent eigenmodes. This method relies upon choosing
a suitable initial guess for each individual mode and for dissipative silencers in general the
method cannot be guaranteed to be free from phenomena such as modal &&jumping'' or other
convergence problems. An alternative approach, adopted by Peat [12], is to solve the
eigenequation analytically by substituting a series expansion for each Bessel and Neumann
function present in the eigenequation. This method has the advantage of avoiding
convergence problems although the accuracy of the predicted wavenumber depends upon
how many terms in the series expansion are retained. The latter approach is adopted in
section 3.

2.2. PREDICTION OF SILENCER TRANSMISSION LOSS

The silencer transmission loss may be computed, once the axial wavenumber has been
calculated, by matching the sound "elds at each silencer discontinuity (see reference [11]).
The approach of Cummings and Chang [11] is adopted here although their analysis is
restricted to include only the least attenuated or fundamental mode. The mode matching
scheme applies continuity of acoustic pressure and continuity of axial particle velocity
across silencer planes A and B (see Figure 1). The assumption of plane wave propagation
allows the sound pressure in regions 1 and 4 to be expressed as
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provided region 4 is anechoically terminated downstream of the silencer so that P
4r
"0.

Applying continuity of acoustic pressure over planes A and B and integrating over the area
of each plane [11] gives
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where S
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is the area of the airway. Thus, by substituting equations (4), (12) and (13) into the
pressure matching conditions
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at x@"0, where ¸ is the length of the silencer chamber.
Similarly, continuity of volume velocity over planes A and B gives
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where u@
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denotes axial acoustic particle velocity. After application of the linearized Euler
equation the velocity matching conditions may be written as
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Equations (16), (17), (20) and (21) may now be solved for unknown modal coe$cients P
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then given by [11]
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The prediction of the silencer transmission loss is straightforward, once the integrals in
equations (16), (17), (20) and (21) have been computed. Cummings and Chang [11]
employed numerical methods to compute these integrals; however, for a circular silencer it
is possible to perform each integration analytically. Moreover, the eigenfunctions in the
chamber are products only of Bessel and Neumann functions and so series expansions can
be substituted into each expression in much the same way as for the governing
eigenequation. This procedure will enable an explicit algorithm to be written for predicting
the silencer transmission loss and the development of this will be discussed in the next
section.

3. SIMPLIFIED TECHNIQUES FOR CALCULATING SILENCER
TRANSMISSION LOSS

In this section an analytical technique is proposed for calculating the transmission loss of
a circular dissipative silencer. To begin with the eigenequation derived in section 2.1
(equation (10)) is re-written by substituting series expansions for the Bessel and Neumann
functions, neglecting terms of O(a5
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) and above. This approximation implies

&&low'' values of a
i
, b

i
and/or a relatively small silencer. However, it is common, for a "xed

silencer geometry, to de"ne an upper frequency limit, beyond which the approximation is
no longer valid. Consequently, such an approach is often termed a low-frequency
approximation and this terminology will be adopted here.

3.1. LOW-FREQUENCY APPROXIMATION OF GOVERNING EIGENEQUATION

Employing a series expansion for each Bessel and Neumann function (see reference [13])
in equation (10) and neglecting terms of O (a5
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Retaining terms up to and including O(a4
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) may seem excessive in comparison

to the method used by Peat [12], who obtained satisfactory transmission loss predictions
after neglecting terms of O (a2
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) and O (b2
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). Moreover, Peat proposed that the small

discrepancies between his transmission loss predictions and the multi-mode predictions of
Cummings and Chang [11] at higher frequencies, were caused by the omission of higher
order modes and not by neglecting higher order terms in the series expansions of the Bessel
and Neumann functions. However, if one examines larger silencers, such as those studied
later on in this paper, the series expansions used by Peat [12] are no longer su$ciently
accurate when predicting the axial wavenumber over the frequency range of interest (up to
approximately 1)5 kHz). It appears that neglecting terms of O(a2
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) and above

provides the underlying cause of the discrepancies between Peat's transmission loss
calculations and those of Cummings and Chang [11], not the omission of higher order
modes. Therefore, to maintain accurate predictions when examining larger silencers it is
necessary, as one would expect, to retain a greater number of terms in the series expansions
of the Bessel and Neumann functions, hence the retention of terms up to and including
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) in the governing eigenequation. This issue is, however, complicated

further when the expressions for the radial wavenumbers (equations (6a) and (6b)) are
substituted into equation (24), allowing the eigenequation to be written explicitly in terms of
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. The dimensionless propagation constant CI appears (as CI 2) in equation (6b) and, for

typical automotive silencers covering a frequency range up to approximately 1)5 kHz, the
value of CI 2 is large when compared to k2
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measurements reported by Delany and Bazley [14] for a range of "brous porous materials
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silencers), it is evident that for these materials, which have relatively high #ow resistivities,
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The coe$cients of equation (27) are listed in Appendix A. The solution of equation (27)
proceeds by expanding k
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in the form [12]
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ignoring terms of O(M3) and above. Substituting equation (28) into equation (27) and
equating terms of similar order in M gives

a"$G
H

20
$JH2

20
!4H

00
H

40
2H

40
H
1@2

, b"
2H

11
!a2H

31
!a4H

51
4a2H

40
!2H

20

, (29a, b)



CIRCULAR DISSIPATIVE SILENCERS 411
c"
2bH

11
#b2H

20
!a2H

22
!3a2bH

31
!6a2b2H

40
#a4H

42
!5a4bH

51
#a6H

62
2a[2a2H

40
!H

20
]

. (29c)

The roots of the zero #ow coe$cient a, give rise to the incident and re#ected waves, hence
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Note here that the roots inside the bracket of the zero #ow coe$cient give rise both to the
least attenuated mode and the second least attenuated mode (the governing eigenequation
(10) is in fact valid for higher order modes as well).

For a given frequency, the least attenuated axial wavenumber has been written explicitly
in terms of the silencer geometry, absorbent material properties, perforate impedance and
mean #ow Mach number. This has been achieved by using a series expansion for the Bessel
and Neumann functions in the governing eigenequation and terminating these expansions
at O (k2

0
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) and O(k2

0
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). Of course, one is at liberty to choose where these series expansions

should be terminated, however, the inclusion of terms of O(k3
0
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), O(k3

0
r3
2
) and above

precludes the writing of a general solution in the form shown above since a cubic or higher
order equation appears for the zero #ow coe$cient.

3.2. LOW-FREQUENCY ALGORITHM FOR SILENCER TRANSMISSION LOSS

After calculating the incident and re#ected axial wavenumbers for the least attenuated
mode, the silencer transmission loss may be calculated using the matching technique
described in section 2.2. By dividing the two pressure matching conditions (equations (16)
and (17)) and the two velocity matching conditions (equations (20) and (21)) by the area in
region (1) these may be re-written as
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Equations (31)} (34) may be solved for the modal coe$cient P
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The silencer transmission loss is calculated by using equation (23). Thus, the transmission
loss of the silencer may be found once the integrals in equations (35) and (36) have been
computed. The analytical computation of these integrals, and subsequent low argument
approximation of the Bessel and Neumann functions, therefore completes the closed-form
analytical solution for the silencer transmission loss. Hence, by substituting equation (11)
into equations (35) and (36), computing the integrals and applying low argument
approximations for the Bessel and Neumann functions, one arrives at the following
expressions:
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where c8 "0)577215665 (Euler's constant).
To arrive at equations (39) and (40), terms of O(k3

0
r3
1
), O(k3

0
r3
2
) and above have been

omitted, in accordance with the procedure adopted in section 3.1. The silencer transmission
loss has now been written explicitly in terms of the silencer geometry, absorbent material
properties, perforate impedance and mean #ow Mach number and may be computed for
any given frequency.

4. EXPERIMENT

4.1. SILENCER TRANSMISSION LOSS

Experimental tests were performed on three, relatively large, circular silencers containing
a bulk reacting porous material and a concentric perforate screen. Two di!erent types of
"bre glass, E glass and A glass, were used as the absorbent materials. The chamber
dimensions for each silencer are given in Table 1 (for each silencer r

1
"37 mm).

A laboratory method convenient for measuring silencer transmission loss is the impulse
technique described by Cummings and Chang [11]. This method is appropriate in the



TABLE 1

Chamber dimensions of test silencers

Silencer Length ¸ (mm) Diameter 2]r
2

(mm) Absorbent

A 315 152)4 E glass
B 330 203)2 E glass
C 450 152)4 A glass

Figure 2. Apparatus for measurement of silencer transmission loss.
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absence of an anechoic chamber and is also more suited to tests which involve mean #ow.
The experimental apparatus was arranged as shown in Figure 2. A rectangular pulse is
delivered by the loudspeaker and measured by a microphone placed downstream of the
silencer. To "lter out unwanted #ow noise, the signal was successively triggered by the
output signal from the function generator, and averaged on the analyser up to 1024 times in
the time domain. The averaged signal was then edited in the time domain to remove
&&spurious'' data such as signal re#ections from the pipe terminations. The measurements
were then repeated but with the silencer removed from the test rig. To calculate the silencer
transmission loss, the time domain signals captured with and without a silencer present are
"rst transformed into the frequency domain by applying a discrete Fourier transform, the
transmission loss is then calculated by taking the logarithmic ratio of the two spectra [11].

The e!ectiveness of the impulse technique for measuring silencer transmission loss
depends heavily upon the pulse signal fed into the silencer and also upon the editing of the
signal captured by the microphone. Ideally, over the frequency range of interest, the
pressure amplitude of the pulse immediately upstream of the silencer should be constant.
Although this criterion is easily initiated at the function generator, a combination of the
ampli"er, loudspeaker and side branch (see Figure 2) serve to distort the pressure amplitude
of the signal before it reaches the silencer. In the tests performed here, a roll o! in pressure
amplitude was noticeable at the extremes of the frequency range of interest. Hence, in these
frequency regions the signal-to-noise ratio may not be su$ciently large enough to provide
sensible data. In addition, editing &&spurious'' data after capturing the signal at the
microphone may remove small portions of data which are characteristic of the silencer itself.
This is because internal re#ections within the silencer may still be present by the time
a spurious re#ection from a termination arrives back at the microphone. The obvious
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remedy is to employ very long sections of pipe, either side of the silencer, and delay for as
long as possible the arrival of unwanted re#ections. However, laboratory dimensions
restricted the size of the test rig to those shown in Figure 2 and inevitably, when editing the
microphone signal, a small portion of the signal characterizing silencer performance was
lost. Spurious re#ections most notably a!ect transmission loss measurements taken in the
low-frequency range, since low-frequency re#ections within the dissipative silencer typically
take the longest to die away. Thus, the overall e!ect of spurious re#ections, combined with
the roll o! in pressure amplitude of the input signal, is to impose experimental frequency
limits, outside which the transmission loss measurements may be unreliable. For the test rig
used here the transmission loss measurements are deemed to be reliable over a frequency
range of approximately 150}1500 Hz. To verify this frequency range a simple expansion
chamber (identical to silencer A but with the absorbent material and perforate removed)
was tested. Measurements were compared to theoretical predictions obtained using
commercial design software (see Peat [15]) and agreement between the two was observed to
be good (within 10%) between 150 and 1750 Hz when no mean #ow was present (see
reference [4] for a more detailed discussion). Obviously, when mean #ow is present
experimental errors increase due to the e!ect of #ow noise; however, a frequency range of
approximately 150}1500 Hz appears reasonable for the apparatus used here.

4.2. BULK ACOUSTIC PROPERTIES OF THE POROUS MATERIALS

Fibre glass is commonly used as an acoustic absorbent in automotive silencers. Two
di!erent types of "bre glass were studied here, E glass, which has an average "bre diameter
of approximately 5}13 lm, and A glass which has a larger average "bre diameter of
approximately 18}26 lm. A popular technique for predicting the propagation constant and
characteristic impedance of a bulk reacting porous material is the empirical power-law
method described by Delany and Bazley [14]. This method is known, however, to produce
non-physical predictions at low frequencies. To overcome this problem Kirby and
Cummings [16] proposed a semi-empirical model which combines the empirical power-law
method of Delany and Bazley with a theoretical microstructure model at low frequencies.
Values for the propagation constant and characteristic impedance (z

a
) were given by Kirby

and Cummings as
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where X is the porosity of the porous material, m
f

is a dimensionless frequency parameter
(m

f
"o

0
f/p

b
, where f is the frequency and p

b
is the #ow resistivity of the bulk porous

material), c
0

is the ratio of speci"c heats for air, Pr is the Prandtl number and the tortuosity



TABLE 2

<alues of material constants

Constant E glass A glass

a
1

0)2202 0)2251
a
2

!0)5850 !0)5827
a
3

0)2010 0)1443
a
4

!0)5829 !0)7088
a
5

0)0954 0)0924
a
6

!0)6687 !0)7177
a
7

0)1689 0)1457
a
8

!0)5707 !0)5951
p
b
(MKS rayl/m) 30716 5976

X 0)952 0)952
q2
0

5)49 3)77
m
f0

0)005 0)025
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q2(u) and shape factor s2(u) are given by
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where a
1
,2, a

8
are Delany and Bazley coe$cients measured experimentally, and q2

0
is the

so-called steady #ow tortuosity. Values for the Delany and Bazley coe$cients, the porosity
of the material, the steady #ow tortuosity and the steady #ow resistivity (calculated for
a material bulk density of 120 kg/m3) are given for E glass and A glass in Table 2. Table 2
also lists a transition value for m

f
, denoted here by m

f0
, and this de"nes a value for m

f
, below

which q2(u) must be set equal to q2
0

in equations (41) and (42) (see reference [16]).

4.3. ACOUSTIC IMPEDANCE OF PERFORATE SCREEN

Perforate screens are common in dissipative silencers and prevent loss of or damage to
the porous material. The silencers studied here were constructed using a #at plate
perforated with circular holes and formed into a concentric screen. The acoustic impedance
of a perforate plate was shown by Kirby and Cummings [17] to increase when backed by
a porous material. Kirby and Cummings formulated a semi-empirical model for the
perforate impedance by adding a theoretical expression accounting for the e!ect of the
porous material onto experimental data obtained for a perforate with no porous backing.
The following relationships were proposed for the impedance of a plate perforated with
circular holes, backed by a porous material and subjected to grazing gas #ow [17],

f"Mf@!i0)425 k
0
d#0)425 dz

a
C/o

0
c
0
N/p, (45)

where d is the diameter of the hole, p is the area porosity of the perforate and f@ is the ori"ce
impedance in the absence of a porous backing which may be written in terms of its resistive
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and reactive components, i.e.,

f@"h#is. (46)

Here, the ori"ce resistance h is given by
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where t is the thickness of the plate, v is the kinematic viscosity and u
*

is the friction velocity
of the mean gas #ow measured on the wall of the pipe. The ori"ce reactance s is given by
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and d
0
"0)849d.

When no mean #ow is present, the ori"ce resistance and ori"ce reactance are given
by [18]

h"(1#t/d) J8k
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0
and s"ik

0
(0)25d#t), (50a, b)

where h and s may be substituted into equation (46) in the same way as for the impedance
values calculated when mean #ow is present. The value for the ori"ce impedance with
a porous backing is then calculated by using equation (45).

5. RESULTS AND DISCUSSION

In this section, transmission loss predictions obtained using the low-frequency analytical
technique described in section 3 are compared both with experimental measurement and
with other theoretical modelling techniques. The primary aim here is to investigate how well
the low-frequency predictions compare with experimental measurements; however,
a comparison is made also with predictions obtained using a more sophisticated modelling
technique since this may provide further insight into the limitations of the model presented
here.

Experimental measurements of silencer transmission loss were carried out for silencers A,
B and C with mean #ow Mach numbers of M"0 and 0)15. Measurements were taken in
the laboratory, using air as the working #uid. Results are reported in Figures 3}6 for
silencer A (with M"0 and 0)15) and silencers B and C with M"0)15. The e!ect of #ow
noise is instantly recognizable in Figures 4}6 as rapid #uctuations in the transmission loss
measurements, such #uctuations are inevitable when mean #ow is present. An identical
perforate screen is present in each test silencer and this had a thickness of t"1 mm, a hole
diameter of d"3)5 mm and an area porosity of p"0)263. When a mean #ow Mach
number of M"0)15 was present the friction velocity was measured as u

*
"2)56 m/s.

In Figures 3}6, comparisons are made between experimental measurements and
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low-frequency predictions obtained both with and without a perforate (to omit the
perforate from transmission loss calculations one simply sets f"0 in the coe$cients of
equation (27)).

It is evident in Figures 3}6 that generally good agreement exists between measured values
for the transmission loss and those calculated using the low-frequency algorithm, both with
and without a perforate. Agreement is best at low frequencies, as one would expect, and
deteriorates at frequencies above approximately 1 kHz. At frequencies above 1)5 kHz
caution should be exercised when drawing comparisons between prediction and experiment
because the experimental method is known to be inaccurate above 1)5 kHz (see discussion
in section 4.1), although data up to 2 kHz are included here since this region is of interest
when studying the low-frequency algorithm. For silencer A, good agreement between
prediction and experiment is observed up to a frequency of approximately 1 kHz and
predictions remain acceptable up to 1)5 kHz. Silencer B has a larger outside diameter than
silencer A and, unsurprisingly, the low-frequency predictions deviate from measurements at
frequencies lower than for silencer A. Silencer C has the same outside diameter as silencer
A but is longer and packed with a di!erent absorbent material. It is evident in Figure 6 that
an agreement between prediction and experiment is generally similar to that observed for
silencer A and this may be expected since the silencers have identical cross-sectional areas.

The low-frequency transmission loss predictions generally compare well with
experimental measurements. However, it is evident that predictions obtained with and
without a perforate di!er, particularly at higher frequencies but also to a lesser extent at
lower frequencies. The perforate does not simply behave as if acoustically transparent, as is
usually thought for screens with relatively high open area porosities (26)3% in this case).
This e!ect is thought to be caused by the porous material backing the perforate since this is
known to signi"cantly increase the acoustic impedance of the perforate (see reference [17]).
After comparison between transmission loss predictions and measurements it is, however,
evident that the in#uence of the perforate may have been overestimated. Overestimation
Figure 3. Predicted and measured transmission loss for silencer A, M"0: ***, experiment; ***,
low-frequency algorithm (no perforate); * -* -* -, low-frequency algorithm (perforate included).



Figure 4. Predicted and measured transmission loss for silencer A, M"0)15: ***, experiment; ***,
low-frequency algorithm (no perforate); * -* -* -, low-frequency algorithm (perforate included).

Figure 5. Predicted and measured transmission loss for silencer B, M"0)15: ***, experiment; ***,
low-frequency algorithm (no perforate); * -* -* -, low-frequency algorithm (perforate included).
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may have been caused by the nature of the perforate impedance measurements performed
by Kirby and Cummings [17] since tests performed under idealized laboratory conditions
may not accurately represent conditions typically encountered in exhaust silencers. This is
manifest in the semi-empirical estimation of the perforate impedance (equation (45)) which
assumes a uniformly packed material lies immediately adjacent to the perforate. After the



Figure 6. Predicted and measured transmission loss for silencer C, M"0)15: ***, experiment; ***,
low-frequency algorithm (no perforate); * -* -* -, low-frequency algorithm (perforate included).

CIRCULAR DISSIPATIVE SILENCERS 419
manufacturing process a uniform distribution of absorbent material is unlikely, particularly
adjacent to the perforate, and it is thought that in a commercial silencer the overall acoustic
impedance of the perforate is signi"cantly reduced in those areas in which the material is
not immediately adjacent to the perforate. Therefore, although the transmission loss
predictions and measurements presented here do indicate that the acoustic impedance of
a perforate, even with a relatively high open area porosity, does signi"cantly in#uence the
overall silencer transmission loss, agreement between prediction and experiment is
currently only qualitative. A more accurate representation of the actual perforate
impedance in a commercially built dissipative exhaust silencer is probably necessary before
improved quantitative agreement is possible. Of course, these observations depend upon
comparisons obtained using a low-frequency modelling technique. To justify these
observations it is necessary to further examine the accuracy of the low-frequency algorithm,
at least over the frequency range studied here. A suitable way of doing this is to compare the
low-frequency algorithm with predictions obtained using a more comprehensive modelling
technique.

To provide further insight into the accuracy of the low-frequency algorithm, the method
is compared here against a &&benchmark'' theoretical model. The benchmark predictions are
chosen to be those provided by the "nite element method described by Peat and Rathi [1]
in the belief that this method provides a complete representation of the problem as higher
order modes are included implicitly in the transmission loss predictions. Peat and Rathi did,
however, omit the e!ect of a perforate screen so comparisons between "nite element
predictions and the low-frequency algorithm are possible here only after omitting the
perforate screen from the low-frequency computations. For each silencer, eight-noded
quadrilateral elements were used to construct a "nite element mesh which contained 393
nodes for silencer A, 413 nodes for silencer B and 441 nodes for silencer C. In Figures 7}12,
the "nite element transmission loss predictions are compared with the low-frequency
algorithm for silencers A}C, after omitting a perforate and with M"0 and 0)15. Also



Figure 7. Predicted transmission loss for silencer A (no perforate), M"0: ***, "nite element method [1];
***, low-frequency algorithm; * - -* - -* , transfer matrix model [12].

Figure 8. Predicted transmission loss for silencer A (no perforate), M"0)15:***, "nite element method [1];
***, low-frequency algorithm; * - -* - -* , transfer matrix model [12].
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included in Figures 7 and 8 are transmission loss predictions obtained using the transfer
matrix approach of Peat [12] since these serve to illustrate the additional bene"t gained
from extending the low argument approximations of the Bessel and Neumann functions to
higher orders.



Figure 9. Predicted transmission loss for silencer B (no perforate), M"0: ***, "nite element method [1];
***, low-frequency algorithm.

Figure 10. Predicted transmission loss for silencer B (no perforate), M"0)15:***, "nite element method [1];
***, low-frequency algorithm.
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It is evident from Figures 7}12 that the general trends observed when comparing the
low-frequency algorithm with experimental transmission loss measurements are apparent
also after comparison with the "nite element predictions. For instance, the low-frequency
algorithm provides good correlation with "nite element predictions up to approximately
1500 Hz for silencers A and C, and 800 Hz for silencer B. Moreover, at low frequencies the



Figure 11. Predicted transmission loss for silencer C (no perforate), M"0:***, "nite element method [1];
***, low-frequency algorithm.

Figure 12. Predicted transmission loss for silencer C (no perforate), M"0)15:***, "nite element method [1];
***, low-frequency algorithm.
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low-frequency algorithm provides an almost exact correlation with "nite element
predictions for each silencer studied, deviating only slightly when mean #ow is present. The
bene"ts of retaining a greater number of terms when expanding the Bessel and Neumann
functions in the governing eigenequation, and also in the matching conditions, are shown
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for silencer A in Figures 7 and 8. It is clear that the method of Peat [12] is adequate only at
very low frequencies, and the method is not su$ciently accurate to be used for studying
larger dissipative silencers. Figures 7 and 8 successfully illustrate the motivation behind the
new formulation since here it is obvious that the method of Peat is unsuitable for silencers of
a size commonly found in automobiles. Moreover, the new approach now agrees well with
the "nite element predictions and in some cases replicates the numerical technique up to
frequencies approaching 2 kHz, although this does depend upon the diameter of the
silencer. Nevertheless, the low-frequency algorithm appears capable of being utilized as
a very fast (predictions are instantaneous) and a relatively accurate iterative design tool for
circular silencers and may successfully replace more computationally onerous techniques
provided one is interested in the low-to-medium frequency range only (often the case in
commercial silencer design).

To utilize successfully the low-frequency algorithm for design purposes it is important to
be aware of its limitations. The accuracy of the method depends both on the size of the
silencer and on the type of porous material contained within the silencer chamber. After
examining a number of di!erent silencer con"gurations, the following relationship is
proposed here for de"ning an approximate upper frequency limit ( f

max
), above which the

low-frequency algorithm should not be used.
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This limit corresponds to a frequency at which the di!erence between transmission loss
predictions obtained by using the low-frequency algorithm and those found using the "nite
element method is approximately 5 dB. This expression depends upon the assumption that
the dimensionless bulk compressibility of the porous material tends, in the high-frequency
limit, towards a value of (c

0
#i0). This assumption e!ectively suppresses the in#uence of the

porous material and therefore provides only a very approximate relationship for f
max

;
nevertheless, for the silencers studied here values for f

max
appear to be reasonable. For

example, for silencers A and C equation (51) "xes an upper frequency limit of
f
max

"1560 Hz and for silencer B f
max

"880 Hz.

6. CONCLUSIONS

For frequencies below f
max

(see equation (51)) the low-frequency algorithm provides good
correlation both with experimental measurement and with more sophisticated modelling
techniques such as the "nite element method. The low-frequency algorithm is suitable for
use as a fast and relatively accurate tool for designing circular dissipative silencers and may
usefully avoid computationally expensive techniques provided one is not studying relatively
large silencers and/or medium to high frequencies. Furthermore, the predictions presented
here show that, even for high open area porosities, the perforate screen has a signi"cant
e!ect on dissipative silencer performance, although further work is required to provide
more reliable impedance data for commercially produced silencers.
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